1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
//! A queue of delayed elements.
//!
//! See [`DelayQueue`] for more details.
//!
//! [`DelayQueue`]: struct@DelayQueue
use crate::time::wheel::{self, Wheel};
use futures_core::ready;
use tokio::time::{sleep_until, Duration, Instant, Sleep};
use core::ops::{Index, IndexMut};
use slab::Slab;
use std::cmp;
use std::collections::HashMap;
use std::convert::From;
use std::fmt;
use std::fmt::Debug;
use std::future::Future;
use std::marker::PhantomData;
use std::pin::Pin;
use std::task::{self, Poll, Waker};
/// A queue of delayed elements.
///
/// Once an element is inserted into the `DelayQueue`, it is yielded once the
/// specified deadline has been reached.
///
/// # Usage
///
/// Elements are inserted into `DelayQueue` using the [`insert`] or
/// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
/// returned. The key is used to remove the entry or to change the deadline at
/// which it should be yielded back.
///
/// Once delays have been configured, the `DelayQueue` is used via its
/// [`Stream`] implementation. [`poll_expired`] is called. If an entry has reached its
/// deadline, it is returned. If not, `Poll::Pending` is returned indicating that the
/// current task will be notified once the deadline has been reached.
///
/// # `Stream` implementation
///
/// Items are retrieved from the queue via [`DelayQueue::poll_expired`]. If no delays have
/// expired, no items are returned. In this case, `Poll::Pending` is returned and the
/// current task is registered to be notified once the next item's delay has
/// expired.
///
/// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
/// returns `Poll::Ready(None)`. This indicates that the stream has reached an end.
/// However, if a new item is inserted *after*, `poll` will once again start
/// returning items or `Poll::Pending`.
///
/// Items are returned ordered by their expirations. Items that are configured
/// to expire first will be returned first. There are no ordering guarantees
/// for items configured to expire at the same instant. Also note that delays are
/// rounded to the closest millisecond.
///
/// # Implementation
///
/// The [`DelayQueue`] is backed by a separate instance of a timer wheel similar to that used internally
/// by Tokio's standalone timer utilities such as [`sleep`]. Because of this, it offers the same
/// performance and scalability benefits.
///
/// State associated with each entry is stored in a [`slab`]. This amortizes the cost of allocation,
/// and allows reuse of the memory allocated for expired entries.
///
/// Capacity can be checked using [`capacity`] and allocated preemptively by using
/// the [`reserve`] method.
///
/// # Usage
///
/// Using `DelayQueue` to manage cache entries.
///
/// ```rust,no_run
/// use tokio_util::time::{DelayQueue, delay_queue};
///
/// use futures::ready;
/// use std::collections::HashMap;
/// use std::task::{Context, Poll};
/// use std::time::Duration;
/// # type CacheKey = String;
/// # type Value = String;
///
/// struct Cache {
/// entries: HashMap<CacheKey, (Value, delay_queue::Key)>,
/// expirations: DelayQueue<CacheKey>,
/// }
///
/// const TTL_SECS: u64 = 30;
///
/// impl Cache {
/// fn insert(&mut self, key: CacheKey, value: Value) {
/// let delay = self.expirations
/// .insert(key.clone(), Duration::from_secs(TTL_SECS));
///
/// self.entries.insert(key, (value, delay));
/// }
///
/// fn get(&self, key: &CacheKey) -> Option<&Value> {
/// self.entries.get(key)
/// .map(|&(ref v, _)| v)
/// }
///
/// fn remove(&mut self, key: &CacheKey) {
/// if let Some((_, cache_key)) = self.entries.remove(key) {
/// self.expirations.remove(&cache_key);
/// }
/// }
///
/// fn poll_purge(&mut self, cx: &mut Context<'_>) -> Poll<()> {
/// while let Some(entry) = ready!(self.expirations.poll_expired(cx)) {
/// self.entries.remove(entry.get_ref());
/// }
///
/// Poll::Ready(())
/// }
/// }
/// ```
///
/// [`insert`]: method@Self::insert
/// [`insert_at`]: method@Self::insert_at
/// [`Key`]: struct@Key
/// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
/// [`poll_expired`]: method@Self::poll_expired
/// [`Stream::poll_expired`]: method@Self::poll_expired
/// [`DelayQueue`]: struct@DelayQueue
/// [`sleep`]: fn@tokio::time::sleep
/// [`slab`]: slab
/// [`capacity`]: method@Self::capacity
/// [`reserve`]: method@Self::reserve
#[derive(Debug)]
pub struct DelayQueue<T> {
/// Stores data associated with entries
slab: SlabStorage<T>,
/// Lookup structure tracking all delays in the queue
wheel: Wheel<Stack<T>>,
/// Delays that were inserted when already expired. These cannot be stored
/// in the wheel
expired: Stack<T>,
/// Delay expiring when the *first* item in the queue expires
delay: Option<Pin<Box<Sleep>>>,
/// Wheel polling state
wheel_now: u64,
/// Instant at which the timer starts
start: Instant,
/// Waker that is invoked when we potentially need to reset the timer.
/// Because we lazily create the timer when the first entry is created, we
/// need to awaken any poller that polled us before that point.
waker: Option<Waker>,
}
#[derive(Default)]
struct SlabStorage<T> {
inner: Slab<Data<T>>,
// A `compact` call requires a re-mapping of the `Key`s that were changed
// during the `compact` call of the `slab`. Since the keys that were given out
// cannot be changed retroactively we need to keep track of these re-mappings.
// The keys of `key_map` correspond to the old keys that were given out and
// the values to the `Key`s that were re-mapped by the `compact` call.
key_map: HashMap<Key, KeyInternal>,
// Index used to create new keys to hand out.
next_key_index: usize,
// Whether `compact` has been called, necessary in order to decide whether
// to include keys in `key_map`.
compact_called: bool,
}
impl<T> SlabStorage<T> {
pub(crate) fn with_capacity(capacity: usize) -> SlabStorage<T> {
SlabStorage {
inner: Slab::with_capacity(capacity),
key_map: HashMap::new(),
next_key_index: 0,
compact_called: false,
}
}
// Inserts data into the inner slab and re-maps keys if necessary
pub(crate) fn insert(&mut self, val: Data<T>) -> Key {
let mut key = KeyInternal::new(self.inner.insert(val));
let key_contained = self.key_map.contains_key(&key.into());
if key_contained {
// It's possible that a `compact` call creates capacity in `self.inner` in
// such a way that a `self.inner.insert` call creates a `key` which was
// previously given out during an `insert` call prior to the `compact` call.
// If `key` is contained in `self.key_map`, we have encountered this exact situation,
// We need to create a new key `key_to_give_out` and include the relation
// `key_to_give_out` -> `key` in `self.key_map`.
let key_to_give_out = self.create_new_key();
assert!(!self.key_map.contains_key(&key_to_give_out.into()));
self.key_map.insert(key_to_give_out.into(), key);
key = key_to_give_out;
} else if self.compact_called {
// Include an identity mapping in `self.key_map` in order to allow us to
// panic if a key that was handed out is removed more than once.
self.key_map.insert(key.into(), key);
}
key.into()
}
// Re-map the key in case compact was previously called.
// Note: Since we include identity mappings in key_map after compact was called,
// we have information about all keys that were handed out. In the case in which
// compact was called and we try to remove a Key that was previously removed
// we can detect invalid keys if no key is found in `key_map`. This is necessary
// in order to prevent situations in which a previously removed key
// corresponds to a re-mapped key internally and which would then be incorrectly
// removed from the slab.
//
// Example to illuminate this problem:
//
// Let's assume our `key_map` is {1 -> 2, 2 -> 1} and we call remove(1). If we
// were to remove 1 again, we would not find it inside `key_map` anymore.
// If we were to imply from this that no re-mapping was necessary, we would
// incorrectly remove 1 from `self.slab.inner`, which corresponds to the
// handed-out key 2.
pub(crate) fn remove(&mut self, key: &Key) -> Data<T> {
let remapped_key = if self.compact_called {
match self.key_map.remove(key) {
Some(key_internal) => key_internal,
None => panic!("invalid key"),
}
} else {
(*key).into()
};
self.inner.remove(remapped_key.index)
}
pub(crate) fn shrink_to_fit(&mut self) {
self.inner.shrink_to_fit();
self.key_map.shrink_to_fit();
}
pub(crate) fn compact(&mut self) {
if !self.compact_called {
for (key, _) in self.inner.iter() {
self.key_map.insert(Key::new(key), KeyInternal::new(key));
}
}
let mut remapping = HashMap::new();
self.inner.compact(|_, from, to| {
remapping.insert(from, to);
true
});
// At this point `key_map` contains a mapping for every element.
for internal_key in self.key_map.values_mut() {
if let Some(new_internal_key) = remapping.get(&internal_key.index) {
*internal_key = KeyInternal::new(*new_internal_key);
}
}
if self.key_map.capacity() > 2 * self.key_map.len() {
self.key_map.shrink_to_fit();
}
self.compact_called = true;
}
// Tries to re-map a `Key` that was given out to the user to its
// corresponding internal key.
fn remap_key(&self, key: &Key) -> Option<KeyInternal> {
let key_map = &self.key_map;
if self.compact_called {
key_map.get(key).copied()
} else {
Some((*key).into())
}
}
fn create_new_key(&mut self) -> KeyInternal {
while self.key_map.contains_key(&Key::new(self.next_key_index)) {
self.next_key_index = self.next_key_index.wrapping_add(1);
}
KeyInternal::new(self.next_key_index)
}
pub(crate) fn len(&self) -> usize {
self.inner.len()
}
pub(crate) fn capacity(&self) -> usize {
self.inner.capacity()
}
pub(crate) fn clear(&mut self) {
self.inner.clear();
self.key_map.clear();
self.compact_called = false;
}
pub(crate) fn reserve(&mut self, additional: usize) {
self.inner.reserve(additional);
if self.compact_called {
self.key_map.reserve(additional);
}
}
pub(crate) fn is_empty(&self) -> bool {
self.inner.is_empty()
}
pub(crate) fn contains(&self, key: &Key) -> bool {
let remapped_key = self.remap_key(key);
match remapped_key {
Some(internal_key) => self.inner.contains(internal_key.index),
None => false,
}
}
}
impl<T> fmt::Debug for SlabStorage<T>
where
T: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
if fmt.alternate() {
fmt.debug_map().entries(self.inner.iter()).finish()
} else {
fmt.debug_struct("Slab")
.field("len", &self.len())
.field("cap", &self.capacity())
.finish()
}
}
}
impl<T> Index<Key> for SlabStorage<T> {
type Output = Data<T>;
fn index(&self, key: Key) -> &Self::Output {
let remapped_key = self.remap_key(&key);
match remapped_key {
Some(internal_key) => &self.inner[internal_key.index],
None => panic!("Invalid index {}", key.index),
}
}
}
impl<T> IndexMut<Key> for SlabStorage<T> {
fn index_mut(&mut self, key: Key) -> &mut Data<T> {
let remapped_key = self.remap_key(&key);
match remapped_key {
Some(internal_key) => &mut self.inner[internal_key.index],
None => panic!("Invalid index {}", key.index),
}
}
}
/// An entry in `DelayQueue` that has expired and been removed.
///
/// Values are returned by [`DelayQueue::poll_expired`].
///
/// [`DelayQueue::poll_expired`]: method@DelayQueue::poll_expired
#[derive(Debug)]
pub struct Expired<T> {
/// The data stored in the queue
data: T,
/// The expiration time
deadline: Instant,
/// The key associated with the entry
key: Key,
}
/// Token to a value stored in a `DelayQueue`.
///
/// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
/// documentation for more details.
///
/// [`DelayQueue`]: struct@DelayQueue
/// [`DelayQueue::insert`]: method@DelayQueue::insert
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Key {
index: usize,
}
// Whereas `Key` is given out to users that use `DelayQueue`, internally we use
// `KeyInternal` as the key type in order to make the logic of mapping between keys
// as a result of `compact` calls clearer.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
struct KeyInternal {
index: usize,
}
#[derive(Debug)]
struct Stack<T> {
/// Head of the stack
head: Option<Key>,
_p: PhantomData<fn() -> T>,
}
#[derive(Debug)]
struct Data<T> {
/// The data being stored in the queue and will be returned at the requested
/// instant.
inner: T,
/// The instant at which the item is returned.
when: u64,
/// Set to true when stored in the `expired` queue
expired: bool,
/// Next entry in the stack
next: Option<Key>,
/// Previous entry in the stack
prev: Option<Key>,
}
/// Maximum number of entries the queue can handle
const MAX_ENTRIES: usize = (1 << 30) - 1;
impl<T> DelayQueue<T> {
/// Creates a new, empty, `DelayQueue`.
///
/// The queue will not allocate storage until items are inserted into it.
///
/// # Examples
///
/// ```rust
/// # use tokio_util::time::DelayQueue;
/// let delay_queue: DelayQueue<u32> = DelayQueue::new();
/// ```
pub fn new() -> DelayQueue<T> {
DelayQueue::with_capacity(0)
}
/// Creates a new, empty, `DelayQueue` with the specified capacity.
///
/// The queue will be able to hold at least `capacity` elements without
/// reallocating. If `capacity` is 0, the queue will not allocate for
/// storage.
///
/// # Examples
///
/// ```rust
/// # use tokio_util::time::DelayQueue;
/// # use std::time::Duration;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::with_capacity(10);
///
/// // These insertions are done without further allocation
/// for i in 0..10 {
/// delay_queue.insert(i, Duration::from_secs(i));
/// }
///
/// // This will make the queue allocate additional storage
/// delay_queue.insert(11, Duration::from_secs(11));
/// # }
/// ```
pub fn with_capacity(capacity: usize) -> DelayQueue<T> {
DelayQueue {
wheel: Wheel::new(),
slab: SlabStorage::with_capacity(capacity),
expired: Stack::default(),
delay: None,
wheel_now: 0,
start: Instant::now(),
waker: None,
}
}
/// Inserts `value` into the queue set to expire at a specific instant in
/// time.
///
/// This function is identical to `insert`, but takes an `Instant` instead
/// of a `Duration`.
///
/// `value` is stored in the queue until `when` is reached. At which point,
/// `value` will be returned from [`poll_expired`]. If `when` has already been
/// reached, then `value` is immediately made available to poll.
///
/// The return value represents the insertion and is used as an argument to
/// [`remove`] and [`reset`]. Note that [`Key`] is a token and is reused once
/// `value` is removed from the queue either by calling [`poll_expired`] after
/// `when` is reached or by calling [`remove`]. At this point, the caller
/// must take care to not use the returned [`Key`] again as it may reference
/// a different item in the queue.
///
/// See [type] level documentation for more details.
///
/// # Panics
///
/// This function panics if `when` is too far in the future.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// use tokio::time::{Duration, Instant};
/// use tokio_util::time::DelayQueue;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert_at(
/// "foo", Instant::now() + Duration::from_secs(5));
///
/// // Remove the entry
/// let item = delay_queue.remove(&key);
/// assert_eq!(*item.get_ref(), "foo");
/// # }
/// ```
///
/// [`poll_expired`]: method@Self::poll_expired
/// [`remove`]: method@Self::remove
/// [`reset`]: method@Self::reset
/// [`Key`]: struct@Key
/// [type]: #
#[track_caller]
pub fn insert_at(&mut self, value: T, when: Instant) -> Key {
assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");
// Normalize the deadline. Values cannot be set to expire in the past.
let when = self.normalize_deadline(when);
// Insert the value in the store
let key = self.slab.insert(Data {
inner: value,
when,
expired: false,
next: None,
prev: None,
});
self.insert_idx(when, key);
// Set a new delay if the current's deadline is later than the one of the new item
let should_set_delay = if let Some(ref delay) = self.delay {
let current_exp = self.normalize_deadline(delay.deadline());
current_exp > when
} else {
true
};
if should_set_delay {
if let Some(waker) = self.waker.take() {
waker.wake();
}
let delay_time = self.start + Duration::from_millis(when);
if let Some(ref mut delay) = &mut self.delay {
delay.as_mut().reset(delay_time);
} else {
self.delay = Some(Box::pin(sleep_until(delay_time)));
}
}
key
}
/// Attempts to pull out the next value of the delay queue, registering the
/// current task for wakeup if the value is not yet available, and returning
/// `None` if the queue is exhausted.
pub fn poll_expired(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Expired<T>>> {
if !self
.waker
.as_ref()
.map(|w| w.will_wake(cx.waker()))
.unwrap_or(false)
{
self.waker = Some(cx.waker().clone());
}
let item = ready!(self.poll_idx(cx));
Poll::Ready(item.map(|key| {
let data = self.slab.remove(&key);
debug_assert!(data.next.is_none());
debug_assert!(data.prev.is_none());
Expired {
key,
data: data.inner,
deadline: self.start + Duration::from_millis(data.when),
}
}))
}
/// Inserts `value` into the queue set to expire after the requested duration
/// elapses.
///
/// This function is identical to `insert_at`, but takes a `Duration`
/// instead of an `Instant`.
///
/// `value` is stored in the queue until `timeout` duration has
/// elapsed after `insert` was called. At that point, `value` will
/// be returned from [`poll_expired`]. If `timeout` is a `Duration` of
/// zero, then `value` is immediately made available to poll.
///
/// The return value represents the insertion and is used as an
/// argument to [`remove`] and [`reset`]. Note that [`Key`] is a
/// token and is reused once `value` is removed from the queue
/// either by calling [`poll_expired`] after `timeout` has elapsed
/// or by calling [`remove`]. At this point, the caller must not
/// use the returned [`Key`] again as it may reference a different
/// item in the queue.
///
/// See [type] level documentation for more details.
///
/// # Panics
///
/// This function panics if `timeout` is greater than the maximum
/// duration supported by the timer in the current `Runtime`.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// use tokio_util::time::DelayQueue;
/// use std::time::Duration;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // Remove the entry
/// let item = delay_queue.remove(&key);
/// assert_eq!(*item.get_ref(), "foo");
/// # }
/// ```
///
/// [`poll_expired`]: method@Self::poll_expired
/// [`remove`]: method@Self::remove
/// [`reset`]: method@Self::reset
/// [`Key`]: struct@Key
/// [type]: #
#[track_caller]
pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
self.insert_at(value, Instant::now() + timeout)
}
#[track_caller]
fn insert_idx(&mut self, when: u64, key: Key) {
use self::wheel::{InsertError, Stack};
// Register the deadline with the timer wheel
match self.wheel.insert(when, key, &mut self.slab) {
Ok(_) => {}
Err((_, InsertError::Elapsed)) => {
self.slab[key].expired = true;
// The delay is already expired, store it in the expired queue
self.expired.push(key, &mut self.slab);
}
Err((_, err)) => panic!("invalid deadline; err={:?}", err),
}
}
/// Returns the deadline of the item associated with `key`.
///
/// Since the queue operates at millisecond granularity, the returned
/// deadline may not exactly match the value that was given when initially
/// inserting the item into the queue.
///
/// # Panics
///
/// This function panics if `key` is not contained by the queue.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// use tokio_util::time::DelayQueue;
/// use std::time::Duration;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::new();
///
/// let key1 = delay_queue.insert("foo", Duration::from_secs(5));
/// let key2 = delay_queue.insert("bar", Duration::from_secs(10));
///
/// assert!(delay_queue.deadline(&key1) < delay_queue.deadline(&key2));
/// # }
/// ```
#[track_caller]
pub fn deadline(&self, key: &Key) -> Instant {
self.start + Duration::from_millis(self.slab[*key].when)
}
/// Removes the key from the expired queue or the timer wheel
/// depending on its expiration status.
///
/// # Panics
///
/// Panics if the key is not contained in the expired queue or the wheel.
#[track_caller]
fn remove_key(&mut self, key: &Key) {
use crate::time::wheel::Stack;
// Special case the `expired` queue
if self.slab[*key].expired {
self.expired.remove(key, &mut self.slab);
} else {
self.wheel.remove(key, &mut self.slab);
}
}
/// Removes the item associated with `key` from the queue.
///
/// There must be an item associated with `key`. The function returns the
/// removed item as well as the `Instant` at which it will the delay will
/// have expired.
///
/// # Panics
///
/// The function panics if `key` is not contained by the queue.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// use tokio_util::time::DelayQueue;
/// use std::time::Duration;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // Remove the entry
/// let item = delay_queue.remove(&key);
/// assert_eq!(*item.get_ref(), "foo");
/// # }
/// ```
#[track_caller]
pub fn remove(&mut self, key: &Key) -> Expired<T> {
let prev_deadline = self.next_deadline();
self.remove_key(key);
let data = self.slab.remove(key);
let next_deadline = self.next_deadline();
if prev_deadline != next_deadline {
match (next_deadline, &mut self.delay) {
(None, _) => self.delay = None,
(Some(deadline), Some(delay)) => delay.as_mut().reset(deadline),
(Some(deadline), None) => self.delay = Some(Box::pin(sleep_until(deadline))),
}
}
Expired {
key: Key::new(key.index),
data: data.inner,
deadline: self.start + Duration::from_millis(data.when),
}
}
/// Attempts to remove the item associated with `key` from the queue.
///
/// Removes the item associated with `key`, and returns it along with the
/// `Instant` at which it would have expired, if it exists.
///
/// Returns `None` if `key` is not in the queue.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// use tokio_util::time::DelayQueue;
/// use std::time::Duration;
///
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // The item is in the queue, `try_remove` returns `Some(Expired("foo"))`.
/// let item = delay_queue.try_remove(&key);
/// assert_eq!(item.unwrap().into_inner(), "foo");
///
/// // The item is not in the queue anymore, `try_remove` returns `None`.
/// let item = delay_queue.try_remove(&key);
/// assert!(item.is_none());
/// # }
/// ```
pub fn try_remove(&mut self, key: &Key) -> Option<Expired<T>> {
if self.slab.contains(key) {
Some(self.remove(key))
} else {
None
}
}
/// Sets the delay of the item associated with `key` to expire at `when`.
///
/// This function is identical to `reset` but takes an `Instant` instead of
/// a `Duration`.
///
/// The item remains in the queue but the delay is set to expire at `when`.
/// If `when` is in the past, then the item is immediately made available to
/// the caller.
///
/// # Panics
///
/// This function panics if `when` is too far in the future or if `key` is
/// not contained by the queue.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// use tokio::time::{Duration, Instant};
/// use tokio_util::time::DelayQueue;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // "foo" is scheduled to be returned in 5 seconds
///
/// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
///
/// // "foo" is now scheduled to be returned in 10 seconds
/// # }
/// ```
#[track_caller]
pub fn reset_at(&mut self, key: &Key, when: Instant) {
self.remove_key(key);
// Normalize the deadline. Values cannot be set to expire in the past.
let when = self.normalize_deadline(when);
self.slab[*key].when = when;
self.slab[*key].expired = false;
self.insert_idx(when, *key);
let next_deadline = self.next_deadline();
if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
// This should awaken us if necessary (ie, if already expired)
delay.as_mut().reset(deadline);
}
}
/// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation.
/// This function is not guaranteed to, and in most cases, won't decrease the capacity of the slab
/// to the number of elements still contained in it, because elements cannot be moved to a different
/// index. To decrease the capacity to the size of the slab use [`compact`].
///
/// This function can take O(n) time even when the capacity cannot be reduced or the allocation is
/// shrunk in place. Repeated calls run in O(1) though.
///
/// [`compact`]: method@Self::compact
pub fn shrink_to_fit(&mut self) {
self.slab.shrink_to_fit();
}
/// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation,
/// to the number of elements that are contained in it.
///
/// This methods runs in O(n).
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// use tokio_util::time::DelayQueue;
/// use std::time::Duration;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::with_capacity(10);
///
/// let key1 = delay_queue.insert(5, Duration::from_secs(5));
/// let key2 = delay_queue.insert(10, Duration::from_secs(10));
/// let key3 = delay_queue.insert(15, Duration::from_secs(15));
///
/// delay_queue.remove(&key2);
///
/// delay_queue.compact();
/// assert_eq!(delay_queue.capacity(), 2);
/// # }
/// ```
pub fn compact(&mut self) {
self.slab.compact();
}
/// Gets the [`Key`] that [`poll_expired`] will pull out of the queue next, without
/// pulling it out or waiting for the deadline to expire.
///
/// Entries that have already expired may be returned in any order, but it is
/// guaranteed that this method returns them in the same order as when items
/// are popped from the `DelayQueue`.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// use tokio_util::time::DelayQueue;
/// use std::time::Duration;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::new();
///
/// let key1 = delay_queue.insert("foo", Duration::from_secs(10));
/// let key2 = delay_queue.insert("bar", Duration::from_secs(5));
/// let key3 = delay_queue.insert("baz", Duration::from_secs(15));
///
/// assert_eq!(delay_queue.peek().unwrap(), key2);
/// # }
/// ```
///
/// [`Key`]: struct@Key
/// [`poll_expired`]: method@Self::poll_expired
pub fn peek(&self) -> Option<Key> {
use self::wheel::Stack;
self.expired.peek().or_else(|| self.wheel.peek())
}
/// Returns the next time to poll as determined by the wheel.
///
/// Note that this does not include deadlines in the `expired` queue.
fn next_deadline(&self) -> Option<Instant> {
self.wheel
.poll_at()
.map(|poll_at| self.start + Duration::from_millis(poll_at))
}
/// Sets the delay of the item associated with `key` to expire after
/// `timeout`.
///
/// This function is identical to `reset_at` but takes a `Duration` instead
/// of an `Instant`.
///
/// The item remains in the queue but the delay is set to expire after
/// `timeout`. If `timeout` is zero, then the item is immediately made
/// available to the caller.
///
/// # Panics
///
/// This function panics if `timeout` is greater than the maximum supported
/// duration or if `key` is not contained by the queue.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// use tokio_util::time::DelayQueue;
/// use std::time::Duration;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // "foo" is scheduled to be returned in 5 seconds
///
/// delay_queue.reset(&key, Duration::from_secs(10));
///
/// // "foo"is now scheduled to be returned in 10 seconds
/// # }
/// ```
#[track_caller]
pub fn reset(&mut self, key: &Key, timeout: Duration) {
self.reset_at(key, Instant::now() + timeout);
}
/// Clears the queue, removing all items.
///
/// After calling `clear`, [`poll_expired`] will return `Ok(Ready(None))`.
///
/// Note that this method has no effect on the allocated capacity.
///
/// [`poll_expired`]: method@Self::poll_expired
///
/// # Examples
///
/// ```rust
/// use tokio_util::time::DelayQueue;
/// use std::time::Duration;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::new();
///
/// delay_queue.insert("foo", Duration::from_secs(5));
///
/// assert!(!delay_queue.is_empty());
///
/// delay_queue.clear();
///
/// assert!(delay_queue.is_empty());
/// # }
/// ```
pub fn clear(&mut self) {
self.slab.clear();
self.expired = Stack::default();
self.wheel = Wheel::new();
self.delay = None;
}
/// Returns the number of elements the queue can hold without reallocating.
///
/// # Examples
///
/// ```rust
/// use tokio_util::time::DelayQueue;
///
/// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
/// assert_eq!(delay_queue.capacity(), 10);
/// ```
pub fn capacity(&self) -> usize {
self.slab.capacity()
}
/// Returns the number of elements currently in the queue.
///
/// # Examples
///
/// ```rust
/// use tokio_util::time::DelayQueue;
/// use std::time::Duration;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
/// assert_eq!(delay_queue.len(), 0);
/// delay_queue.insert(3, Duration::from_secs(5));
/// assert_eq!(delay_queue.len(), 1);
/// # }
/// ```
pub fn len(&self) -> usize {
self.slab.len()
}
/// Reserves capacity for at least `additional` more items to be queued
/// without allocating.
///
/// `reserve` does nothing if the queue already has sufficient capacity for
/// `additional` more values. If more capacity is required, a new segment of
/// memory will be allocated and all existing values will be copied into it.
/// As such, if the queue is already very large, a call to `reserve` can end
/// up being expensive.
///
/// The queue may reserve more than `additional` extra space in order to
/// avoid frequent reallocations.
///
/// # Panics
///
/// Panics if the new capacity exceeds the maximum number of entries the
/// queue can contain.
///
/// # Examples
///
/// ```
/// use tokio_util::time::DelayQueue;
/// use std::time::Duration;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::new();
///
/// delay_queue.insert("hello", Duration::from_secs(10));
/// delay_queue.reserve(10);
///
/// assert!(delay_queue.capacity() >= 11);
/// # }
/// ```
#[track_caller]
pub fn reserve(&mut self, additional: usize) {
assert!(
self.slab.capacity() + additional <= MAX_ENTRIES,
"max queue capacity exceeded"
);
self.slab.reserve(additional);
}
/// Returns `true` if there are no items in the queue.
///
/// Note that this function returns `false` even if all items have not yet
/// expired and a call to `poll` will return `Poll::Pending`.
///
/// # Examples
///
/// ```
/// use tokio_util::time::DelayQueue;
/// use std::time::Duration;
///
/// # #[tokio::main]
/// # async fn main() {
/// let mut delay_queue = DelayQueue::new();
/// assert!(delay_queue.is_empty());
///
/// delay_queue.insert("hello", Duration::from_secs(5));
/// assert!(!delay_queue.is_empty());
/// # }
/// ```
pub fn is_empty(&self) -> bool {
self.slab.is_empty()
}
/// Polls the queue, returning the index of the next slot in the slab that
/// should be returned.
///
/// A slot should be returned when the associated deadline has been reached.
fn poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Key>> {
use self::wheel::Stack;
let expired = self.expired.pop(&mut self.slab);
if expired.is_some() {
return Poll::Ready(expired);
}
loop {
if let Some(ref mut delay) = self.delay {
if !delay.is_elapsed() {
ready!(Pin::new(&mut *delay).poll(cx));
}
let now = crate::time::ms(delay.deadline() - self.start, crate::time::Round::Down);
self.wheel_now = now;
}
// We poll the wheel to get the next value out before finding the next deadline.
let wheel_idx = self.wheel.poll(self.wheel_now, &mut self.slab);
self.delay = self.next_deadline().map(|when| Box::pin(sleep_until(when)));
if let Some(idx) = wheel_idx {
return Poll::Ready(Some(idx));
}
if self.delay.is_none() {
return Poll::Ready(None);
}
}
}
fn normalize_deadline(&self, when: Instant) -> u64 {
let when = if when < self.start {
0
} else {
crate::time::ms(when - self.start, crate::time::Round::Up)
};
cmp::max(when, self.wheel.elapsed())
}
}
// We never put `T` in a `Pin`...
impl<T> Unpin for DelayQueue<T> {}
impl<T> Default for DelayQueue<T> {
fn default() -> DelayQueue<T> {
DelayQueue::new()
}
}
impl<T> futures_core::Stream for DelayQueue<T> {
// DelayQueue seems much more specific, where a user may care that it
// has reached capacity, so return those errors instead of panicking.
type Item = Expired<T>;
fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> {
DelayQueue::poll_expired(self.get_mut(), cx)
}
}
impl<T> wheel::Stack for Stack<T> {
type Owned = Key;
type Borrowed = Key;
type Store = SlabStorage<T>;
fn is_empty(&self) -> bool {
self.head.is_none()
}
fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
// Ensure the entry is not already in a stack.
debug_assert!(store[item].next.is_none());
debug_assert!(store[item].prev.is_none());
// Remove the old head entry
let old = self.head.take();
if let Some(idx) = old {
store[idx].prev = Some(item);
}
store[item].next = old;
self.head = Some(item);
}
fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
if let Some(key) = self.head {
self.head = store[key].next;
if let Some(idx) = self.head {
store[idx].prev = None;
}
store[key].next = None;
debug_assert!(store[key].prev.is_none());
Some(key)
} else {
None
}
}
fn peek(&self) -> Option<Self::Owned> {
self.head
}
#[track_caller]
fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
let key = *item;
assert!(store.contains(item));
// Ensure that the entry is in fact contained by the stack
debug_assert!({
// This walks the full linked list even if an entry is found.
let mut next = self.head;
let mut contains = false;
while let Some(idx) = next {
let data = &store[idx];
if idx == *item {
debug_assert!(!contains);
contains = true;
}
next = data.next;
}
contains
});
if let Some(next) = store[key].next {
store[next].prev = store[key].prev;
}
if let Some(prev) = store[key].prev {
store[prev].next = store[key].next;
} else {
self.head = store[key].next;
}
store[key].next = None;
store[key].prev = None;
}
fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
store[*item].when
}
}
impl<T> Default for Stack<T> {
fn default() -> Stack<T> {
Stack {
head: None,
_p: PhantomData,
}
}
}
impl Key {
pub(crate) fn new(index: usize) -> Key {
Key { index }
}
}
impl KeyInternal {
pub(crate) fn new(index: usize) -> KeyInternal {
KeyInternal { index }
}
}
impl From<Key> for KeyInternal {
fn from(item: Key) -> Self {
KeyInternal::new(item.index)
}
}
impl From<KeyInternal> for Key {
fn from(item: KeyInternal) -> Self {
Key::new(item.index)
}
}
impl<T> Expired<T> {
/// Returns a reference to the inner value.
pub fn get_ref(&self) -> &T {
&self.data
}
/// Returns a mutable reference to the inner value.
pub fn get_mut(&mut self) -> &mut T {
&mut self.data
}
/// Consumes `self` and returns the inner value.
pub fn into_inner(self) -> T {
self.data
}
/// Returns the deadline that the expiration was set to.
pub fn deadline(&self) -> Instant {
self.deadline
}
/// Returns the key that the expiration is indexed by.
pub fn key(&self) -> Key {
self.key
}
}